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Abstract

We define the proportional ordinal Shapley (the POSh) solution, an ordi-

nal concept for pure exchange economies in the spirit of the Shapley value.

Our construction is inspired by Hart and Mas-Colell’s (1989) characteriza-

tion of the Shapley value with the aid of a potential function. The POSh

exists and is unique and essentially single-valued for a fairly general class of

economies. It satisfies individual rationality, anonymity, and properties sim-

ilar to the null-player and null-player out properties in transferable utility

games. Moreover, the POSh is immune to agents’ manipulation of their ini-

tial endowments: It is not D-manipulable and does not suffer from the transfer

paradox. Finally, we construct a bidding mechanism à la Pérez-Castrillo and

Wettstein (2001) that implements the POSh in subgame perfect Nash equi-

librium for economies where agents have homothetic preferences and positive

endowments.
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1 Introduction

Economists have long been proposing allocation rules for economic environments

and evaluating them by different desiderata. Though no rule is advantageous under

every criterion, some allocation rules arise as dominant solution concepts for spe-

cific economic environments, such as the Walrasian allocation rule for pure exchange

economies and the Shapley value (Shapley, 1953) for coalitional games with trans-

ferable utility (TU). A natural question is whether we can extend solution concepts

that were initially designed for a specific economic environment to another.

In this paper, we propose a solution concept for pure exchange economies in

the spirit of the Shapley value, which satisfies many appealing properties and is

characterized by several methods in the class of TU games. Our construction is

inspired by Hart and Mas-Colell’s (1989) characterization of the Shapley value with

the aid of a potential function. This function assigns a number to every TU game

with the only condition that the marginal contributions to the potential of all players

add up to the worth of the grand coalition. Hart and Mas-Colell (1989) prove the

surprising fact that there is only one such potential function and the vector of

marginal contributions coincides with the Shapley value.

We follow a similar approach and associate a number to each pure exchange econ-

omy, the potential of this economy. Due to the absence of a numeraire commodity

in these environments, we choose each agent’s initial endowment as a yardstick to

measure the variation of his welfare in a solution. Moreover, to ensure the feasibility

of the proposal, we assess an agent’s marginal gain or loss in terms of the ratio of

the potential of the economy over the potential of the subeconomy where he does

not participate, instead of the difference between the two potentials. Then, the only

condition that we impose to the potential function is the existence of an efficient

allocation profile in the economy that satisfies that any agent is indifferent between

that allocation and his “proportional” marginal contribution to the potential (that

is, in terms of the ratio) times his initial endowment. That is, we require that it

be possible for each agent to obtain his proportional marginal contribution to the

potential through an efficient allocation.
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The construction of the potential of a pure exchange economy entails the simul-

taneous definition of the efficient allocation profiles that are equivalent for all the

agents to their proportional marginal contributions. These allocations are our solu-

tion for the economy. We name the set of these allocations the proportional ordinal

Shapley (the POSh) solution. We include the word “ordinal” in the name of the

solution because its first important characteristic is that, by construction, the POSh

is an ordinal solution, that is, it is invariant to order-preserving transformations of

the agents’ utilities.

We show that the POSh solution is unique and essentially single-valued1 in

the set of exchange economies where the agents’ preferences are reflexive, complete,

transitive, strongly monotone, and continuous. It is also individually rational. More-

over, the POSh inherits several of the appealing properties of the Shapley value. In

particular, it is anonymous with respect to the name of the agents (and it is also

neutral with respect to the name of the commodities). Additionally, the POSh pre-

scribes a zero bundle to any agent with zero endowments (these are “empty-bundle

agents,” we call them “empty agents” for short); that is, it satisfies the empty-agent

property. Further, it satisfies the empty-agent out property, which requires that the

presence of an empty agent does not influence the prescribed bundles for the rest

of the agents. These properties are reminiscent of the null player property and the

null player out property of the Shapley value (Derks and Haller, 1999).

Similar to the characterization of the Shapley value in terms of the Harsanyi’s

(1959) coalitional dividends, the POSh can be constructed and characterized using

coalitional dividend yield ratios.

Additionally, we prove that the POSh is immune to certain peculiarities suffered

by several allocation rules for pure exchange economies, such as the Walrasian equi-

librium. First, the POSh is not D-manipulable (Postlewaite, 1979); that is, an agent

cannot be better off by getting rid of part of his endowment. Second, it does not

suffer from the transfer paradox (Postlewaite and Webb, 1984); that is, the transfer

1 That is, if the POSh solution prescribes several allocations to an economy, every agent is

indifferent among all these allocations. Moreover, any allocation that is indifferent for every agent

to an allocation in the POSh solution is also in this set.
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of a portion of his endowment to another individual cannot make an agent better

off and the recipient worse off.

Finally, we provide an additional link between the POSh for pure exchange

economies and the Shapley value for TU games in terms of their non-cooperative

foundations. Pérez-Castrillo and Wettstein (2001) propose a bidding mechanism

that implements the Shapley value. We adapt their mechanism2 to our environ-

ment and show that it implements the POSh in subgame perfect Nash equilibrium

(SPNE) for economies with an arbitrary number of agents in environments where

the agents’ preferences are homothetic.

The closest contribution to ours is the paper by Pérez-Castrillo and Wettstein

(2006). They also provide an ordinal solution in the spirit of the Shapley value for

pure exchange economies by extending the idea of Pazner and Schmeidler (1978),

who introduce the notion of Pareto-efficient egalitarian equivalent (PEEE) alloca-

tions. A PEEE allocation is Pareto efficient and “fair” because, for each agent, it is

equivalent preference-wise to the same fixed bundle. Pérez-Castrillo and Wettstein’s

(2006) ordinal Shapley value (OSV ) considers possibly different individual endow-

ments and is constructed so that it satisfies “consistency,” in the sense that an agent’s

payoff is based on what he would obtain according to this value when applied to

subeconomies.

An essential difference between the POSh and the OSV is in the domain of the

solutions. We consider economies where the consumption bundles are non-negative,

whereas the OSV is defined in environments where the consumption of a commodity

can be positive or negative. Our set-up is more common in the general equilibrium

literature and prevents the consumption of a negative amount of goods, such as

apples. Let us note that most of the properties of the POSh, such as unicity,

essential single-valueness, empty-agent, and empty-agent out, are not satisfied by

the OSV . In addition, the OSV may suffer from the transfer paradox.

In addition to Pérez-Castrillo and Wettstein (2006), the early works by Harsanyi

(1959), Shapley (1969), and Maschler and Owen (1992) propose extensions of the

Shapley value to non-transferable utility environments such as the pure exchange

2 See also Pérez-Castrillo and Wettstein (2002).
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economy that we study. The three proposals are defined in the utility space. They

abstract from the physical environment that generates the utilities. However, as

Roemer (1986, 1988) discusses, much information is lost when one moves from the

economic environment to the utility space. Thus, on the one hand, these proposals

are not ordinal since the solutions are not invariant to alternative representations of

the agents’ utilities. Moreover, Greenberg et al. (2002) make the observation that

the von Neumann and Morgenstein stable sets, defined for the economic environment

and the utility space, respectively, may not coincide, even though both are ordinal.

On the other hand, as Alon and Lehrer (2019) point out, two very different economic

environments, whose solution should be different, may lead to the same allocation

of utilities and, hence, the same solution.

McLean and Postlewaite (1989) also extend a notion from the class of TU games

to the set of pure exchange economies. They provide an ordinal nucleolus, a solution

concept proposed by Schmeidler (1969) for TU games. Nicolò and Perea (2005) and

Alon and Lehrer (2019) offer ordinal solutions for bargaining problems.

The remainder of the paper is organized as follows. Section 2 describes the

economic environment. It also introduces our new solution concept–the proportional

ordinal Shapley solution. Section 3 proves the existence and uniqueness of the

POSh. Several properties of the POSh are also stated and proved. Section 4

presents the bidding mechanism that implements the POSh. Section 5 concludes

the paper. All the proofs are in the Appendix.

2 The environment and the solution concept

We consider a pure exchange economy. The set of agents is N ≡ {1, . . . , n}, with

generic agent i. The set of goods is L ≡ {1, . . . , l}, which is fixed throughout this

paper.

Agent i is described by (wi,�i), where wi ≡ (wi1, . . . , wil) ∈ RL
+ is his com-

modity bundle, and �i is his preference relation defined over RL
+. We assume �i

is reflexive, complete, and transitive for each i ∈ N .3 We also assume that it is

3 Agent i’s preference �i is reflexive if x �i x for all x ∈ RL
+; �i is complete if either x �i y
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strongly monotone and continuous. Preference �i is strongly monotone if x �i y

for all x,y ∈ RL
+ such that x ≥ y and x 6= y. Preference �i is continuous if

{y ∈ RL
+ | y �i x} and {y ∈ RL

+ | y �i x} are closed subsets of RL
+, for all x ∈ RL

+.

A pure exchange economy is a triplet (N,w,�), where the vector w is understood

as an endowment profile (w1, . . . ,wn) and � is understood as a preference profile

(�1, . . . ,�n). For a fixed set of agents N , the set of all exchange economies where

the agents’ preferences are reflexive, complete, transitive, strongly monotone, and

continuous is denoted by EN . The set of all such exchange economies with a finite

set of agents is denoted by E .

Definition 1. A feasible allocation for an exchange economy (N,w,�) is a

profile z ≡ (z1, . . . , zn) ∈ RN×L
+ such that

∑
i∈N zi ≤

∑
i∈N wi.

We denote by Z(N,w,�) the set of feasible allocations for the exchange economy

(N,w,�).

Two feasible allocations are comparable when all agents prefer one to the other

in unison. Formally, for z, z′ ∈ Z(N,w,�), we write z � z′ if zi �i z′i for all i ∈ N .

Similarly, z ∼ z′ if zi ∼i z′i for all i ∈ N . Then, we can define an efficient allocation.

Definition 2. A feasible allocation z ∈ Z(N,w,�) is efficient if there is no feasible

allocation z′ ∈ Z(N,w,�) such that z′ � z and z′j �j zj for some j ∈ N .

We denote by E(N,w,�) the set of efficient allocations for the exchange economy

(N,w,�).

We now define a solution concept for pure exchange economies.

Definition 3. A solution is a correspondence F : E  
⋃
N RN×L

+ such that

F (N,w,�) ⊆ Z(N,w,�) for all (N,w,�) ∈ E.

Thus, a solution F assigns a set of feasible allocations to each pure exchange econ-

omy. Given two solutions F and F ′, we write F ⊆ F ′ if F (N,w,�) ⊆ F ′(N,w,�)

for all (N,w,�) ∈ E .

A solution F is single-valued if F is a function, that is, it prescribes a unique

feasible allocation for every economy. A solution F is essentially single-valued if {y ∈

or y �i x for all x,y ∈ RL
+; �i is transitive if x �i y and y �i z imply x �i z for all x,y, z ∈ RL

+.
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Z(N,w,�) | y ∼ x} = F (N,w,�) for all (N,w,�) ∈ E and all x ∈ F (N,w,�).

Thus, an essentially single-valued solution prescribes a ∼-equivalence class within

the set of all efficient allocations. For an essentially single-valued solution F , we write

Fi(N,w,�) �i Fi(N,w′,�) for i ∈ N if player i prefers the profiles in Fi(N,w,�)

to the profiles in Fi(N,w
′,�). We write F (N,w,�) � F (N,w′,�) similarly.

Given that agents have initial private endowments, a reasonable solution should

ensure that an agent has an incentive to participate instead of walking away with

his endowment. The individual rationality of a solution captures this notion:

Definition 4. A solution F satisfies individual rationality if x � w for all

x ∈ F (N,w,�) and all (N,w,�) ∈ E.

Next, we formulate two properties that adapt the ideas of the null player prop-

erty and the null player out property (Derks and Haller, 1999) to pure exchange

economies. We identify a type of agents in pure exchange economies who play a

similar role as the null players in coalitional games. They are empty-basket agents;

we call them empty agents. An agent i ∈ N is an empty agent in the economy

(N,w,�) if wi = 0. An economy consisting of empty agents only is called an empty

economy.

The definition of the second property requires the following notation. Let x ∈

RN×L
+ be an allocation profile. Then, for N ′ ⊆ N , we denote by x |N ′∈ RN ′×L

+ the

profile x restricted to N ′, that is, (x |N ′)i = xi for all i ∈ N ′. The restrictions of the

preference profile are denoted analogously.

Definition 5. A solution F satisfies the empty-agent property if xi = 0 for each

empty agent i ∈ N in (N,w,�), all x ∈ F (N,w,�), and all (N,w,�) ∈ E.

Definition 6. A solution F satisfies the empty-agent out property if x |N\{i}∈

F (N \ {i},w |N\{i},�|N\{i}) for each empty agent i ∈ N in (N,w,�), for all x ∈

F (N,w,�), and all (N,w,�) ∈ E.

The empty-agent and the empty-agent out properties are normative properties.

The first one requires that an empty agent be entitled to a zero bundle in any

allocation of the solution. In contrast, the empty-agent out property requires that
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the presence of an empty agent should not influence the allocation of the solution

to the rest of the agents. In general, the two properties are logically independent of

each other. But, in the presence of efficiency, the empty-agent out property implies

the empty-agent property.4

It is worth mentioning that Shafer’s (1980) example demonstrates that neither

the empty-agent property nor the empty-agent out property is satisfied by Shapley’s

(1969) NTU value.

We now turn to the properties of anonymity and neutrality. The first refers

to the agents and the second to the commodities. Before defining the property of

anonymity, we introduce the notation for bijections of agents and economies.

Consider a bijection π : N → N ′. For a feasible allocation z ∈ Z(N,w,�), we

define the allocation πz ∈ Z(N ′,w,�) by (πz)π(i) ≡ zi for all i ∈ N . Similarly, for

a preference profile � for N , we define the preference profile �π for N ′ by �ππ(i)=�i

for all i ∈ N . Then, for each economy (N,w,�) and each bijection π, we denote the

bijection of the economy by π(N,w,�) ≡ (π[N ], πw,�π). That is, the structure

of economy π(N,w,�) is identical to (N,w,�), but the names of the agents are

changed according to π.

A solution is anonymous if the allocations that it prescribes for an economy are

not influenced by the name of the agents. Formally:

Definition 7. A solution F is anonymous if πx ∈ Fπ(N,w,�) for each bijection

π : N → N ′ and each x ∈ F (N,w,�).

The property of neutrality, which refers to the name of the commodities, can

be defined analogously. For a bijection ρ : L → L′ and a commodity bundle x ∈

RL
+, we define the commodity bundle ρx ∈ RL′

+ by (ρx)ρ(h) ≡ xh for all h ∈ L.

Also, for a preference profile � over RL
+, the preference profile �ρ is defined over

RL′
+ by ρx �ρi ρy if x �i y, for all i ∈ N and all x,y ∈ RL

+. Then, for each

4 To see this implication, consider an efficient solution that satisfies the empty-agent out

property but does not satisfy the empty-agent property. Then there exists x ∈ F (N,w,�) such

that xi 6= 0 for some empty agent i in (N,w,�). By the empty-agent out property, x |N\{i}∈ F (N\

{i},w |N\{i},�|N\{i}). Then we could construct a feasible profile y ∈ Z(N \ {i},w |N\{i},�|N\{i})

where yj ≡ xj+ xi

n−1 , which would be strictly preferred by every j ∈ N \{i} by strong monotonicity.
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economy (N,w,�) and each bijection ρ, we denote the bijection of the economy by

ρ(N,w,�) ≡ (N, ρw,�ρ). Thus, the structure of economy ρ(N,w,�) is identical

to (N,w,�), but the names of the commodities are changed according to ρ.

Definition 8. A solution F is neutral if ρx ∈ Fρ(N,w,�) for each bijection

ρ : L→ L′ and each x ∈ F (N,w,�).

The last two properties that we propose concern the possibility for an agent to

“manipulate” the solution outcome via his endowment. Aumann and Peleg (1974)

demonstrate that before the opening of trade, an agent may be better off by get-

ting rid of part of his endowment. In light of this peculiarity, Postlewaite (1979)

formulates the following property, which is not implied by efficiency and individual

rationality:

Definition 9. An essentially single-valued solution F is D-manipulable if there

exist w,w′ ∈ RN×L
+ such that wi ≥ w′i for some i ∈ N , wj = w′j for each j ∈ N\{i},

and Fi(N,w,�) ≺i Fi(N,w′,�).

An anomaly closely related to D-manipulability is the transfer paradox: a trans-

fer of a portion of his endowment makes the donor better off and the recipient

worse off (see, e.g., Postlewaite and Webb, 1984). Definition 10 formally states this

paradox.

Definition 10. An essentially single-valued solution F exhibits the transfer para-

dox if there exist w,w′ ∈ RN×L
+ and two distinct agents i, j ∈ N such that wi ≥ w′i,

wi+wj = w′i+w′j and wk = w′k for each k ∈ N \{i, j}, Fi(N,w,�) ≺i Fi(N,w′,�),

and Fj(N,w,�) �i Fj(N,w′,�).

Now we present our solution concept: the proportional ordinal Shapley solution

(POSh). We define the POSh in terms of agents’ preferences directly. Thus, it is

an ordinal solution.

To define the POSh, we first define a potential in our economic environment,

by adapting the idea of the potential introduced by Hart and Mas-Colell (1989)

in TU games. In this class of games, a potential is a function that associates to

every n-person game a single number. Once we have such a potential function, we
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can associate to each agent i in the game (N, v) his marginal contribution to the

potential, that is, the difference between the potential of (N, v) and the potential of

the game (N \ {i}, v |N\{i}). Then, it is also reasonable to request that the sum of

these agents’ marginal contributions be efficient, in the sense that it must be equal

to the worth of the grand coalition. Hart and Mas-Colell (1989) show that there

exists only one such potential function, and the vector of its marginal contributions

corresponds to the Shapley value.

In our set of exchange economies, a potential function also associates a single

number to each economy. To assign a surplus (an allocation) to each agent i in the

economy (N,w,�) based on the potential, we need a yardstick. We choose agent

i’s initial endowment wi as the reference to measure agent i’s welfare. Moreover,

to ensure that the proposal made to this agent is feasible, we measure his marginal

contribution not in terms of the difference between the potentials of the economies

with and without him, (N,w,�) and (N \ {i},w |N\{i},�|N\{i}), (times his initial

endowment) because this could lead to a negative quantity of some commodities.

Instead, we measure an agent’s marginal gain or loss in terms of the ratio of the

potentials. Finally, we require that it should be possible to allocate to each agent a

bundle equivalent for him to the bundle corresponding to his marginal contribution

to the potential (in terms of ratio) and that this allocation is efficient.

Thus, in our exchange economy, we define a potential function as follows:

Definition 11. A potential function P : E → R++ is defined inductively on the

number of players |N |:

1. P (∅) ≡ 1;

2. for (N,w,�) ∈ E, P (N,w,�) satisfies that there exists x ∈ E(N,w,�) such

that P (N,w,�)
P (N\{i},w|N\{i},�|N\{i})

wi ∼i xi for all i ∈ N .5

The prescription of the POSh is intertwined with our definition of a potential.

An allocation is in the POSh if it is efficient and each agent i is indifferent between

his prescribed bundle and some multiple of his endowment, where the multiple

is equal to the change of potential resulting from his entrance. Thus, we have the

5 If N = {i}, we let P (N \ {i},w |N\{i},�|N\{i}) ≡ P (∅).
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following definition of a proportional ordinal Shapley solution in terms of a potential

P .

Definition 12. Given a potential function P , a proportional ordinal Shap-

ley solution POSh : E  
⋃
N RN×L

+ is defined by x ∈ POSh(N,w,�) if x ∈

E(N,w,�) and P (N,w,�)
P (N\{i},w|N\{i},�|N\{i})

wi ∼i xi for all i ∈ N .

As we will see in the next section, the POSh is an appealing solution concept.

It enjoys many properties that echo the properties of the Shapley value, such as

anonymity, the empty-agent property, and the empty-agent out property. Moreover,

it is also immune to well-known anomalies of the Walrasian equilibrium, such as the

D-manipulability and the transfer paradox.

At last, the POSh is often easy to compute owing to its neat definition in terms of

the potential. For illustration, we compute the POSh for a simple 3-agent economy

in Example 1.

Example 1. Consider the economy with L = {1, 2}, N = {1, 2, 3}, w1 = w2 =

(4, 4), w3 = (2, 2), u1(x1, y1) = 4x1+y1, u2(x2, y2) = x2+4y2, and u3(x3, y3) = x3y3.

To compute the POSh(N,w, u), we need to find the potential of each subeconomy.

First, it is easy to see that P ({i}) = 1 for i = 1, 2, 3.6 Second, for the subeconomy

({1, 2}, (w1,w2, (u1, u2)), an efficient allocation where both agents obtain an alloca-

tion equivalent to P ({1,2})
1

(4, 4) assigns the eight units of the first commodity to agent

1 and those of the second commodity to agent 2. Hence, P ({1, 2})(4, 4) ∼1 (8, 0)

(and P ({1, 2})(4, 4) ∼2 (0, 8)), which implies that P ({1, 2}) = 8
5
.

Third, any interior efficient allocation in the subeconomy ({1, 3}, (w1,w3, (u1, u3))

satisfies that y3 = 4x3. Therefore, we can conjecture that an efficient allocation in

the POSh is ((6−x3, 6−4x3), (x3, 4x3)) such that 0 ≤ x3 ≤ 6
4
. Then P ({1, 3})(4, 4) ∼1

(6 − x3, 6 − 4x3) and P ({1, 3})(2, 2) ∼1 (x3, 4x3), that is, 20P ({1, 3}) = 30 − 8x3

and 4P ({1, 3})2 = 4x23. Hence, P ({1, 3}) = 15
14

. Similarly, P ({2, 3}) = 15
14

too.

Finally, consider the economy (N, 2w, u). We can conjecture that a generic effi-

cient allocation in the POSh must satisfy x1 = x2 and y1 = y2 = 0, that is, it must be

6 In this example, we write P ({i}) instead of P ({i},wi, ui), and similarly for the other sube-

conomies, for simplicity.
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((x1, 0), (0, x1), (10−x1, 10−x1)), for x1 ∈ [0, 10]. Then, P (N)
P ({2,3})(4, 4) ∼1 (x1, 0) and

P (N)
P ({1,2})(2, 2) ∼3 (10−x1, 10−x1)). This system of equations leads to P (N) = 840

497
and

x1 = 560
71

. Therefore, the unique bundle in the POSh is ((560
71
, 0), (0, 560

71
), (150

71
, 150

71
)).

Remark 1. It is easy to see that the Walrasian equilibrium allocation and the core

for Example 1 coincide, which is ((8, 0), (0, 8), (2, 2)) (the Walrasian equilibrium

price is (1, 1)). Therefore, the POSh may not be in the core.

3 Existence and properties of the proportional or-

dinal Shapley solution

In this section, we establish the existence, uniqueness, and other properties of the

proportional ordinal Shapley solution.

Before we state our results regarding the POSh, we first prove the existence and

uniqueness of the potential function restricted to economies in which each agent

is not empty. We use the auxiliary notion of “coalitional dividend yield ratio”

(“dividend ratio,” for short), which is a multiplicative version of Harsanyi’s (1959)

coalitional dividend. Parallel to Hart and Mas-Colell (1989), our proof is also based

on a simple representation of the potential through the dividend yield ratios.

Denote by E ′ the set of all economies with only non-empty agents. We establish

in Proposition 1 the existence and uniqueness of the potential function restricted to

E ′.

Proposition 1. There exists a unique potential function restricted to E ′.

Proposition 1 states the existence and uniqueness of the potential function if

we restrict attention to economies without empty players. We make two remarks

concerning the hypotheses that we use in the proposition.

Remark 2. We state Proposition 1 for economies where the agents’ preferences

satisfy strong monotonicity. We cannot replace this hypothesis by the weaker ax-

iom of strict monotonicity. Recall that player i’s preference over commodities �i

is strictly monotone if x �i y for all x,y ∈ RL
+ such that xh > yh for all
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h ∈ L. To see that this weaker property is not enough, consider a two-agent economy

({1, 2},w,�), where w1 = (0, 1), w2 = (1, 0), �1 is represented by u1(x1, y1) = x1,

and �2 is represented by u2(x2, y2) = y2. Both agents’ preferences satisfy strict

monotonicity but they do not satisfy strong monotonicity. According to Defini-

tion 11, P ({1},w1,�1) = P ({2},w2,�2) = 0. Then the denominators of both

P ({1,2},w,�)
P ({2},w2,�2)

and P ({1,2},w,�)
P ({1},w1,�1)

vanish. Therefore, we are unable to assign a number to

P ({1, 2},w,�). Hence, a potential function does not exist for this economy.

Remark 3. The full strength of the property of the continuity of preferences is not

necessary for Proposition 1 to hold. The proof only requires lower semi-continuity

of the preferences, i.e., {y ∈ RL
+ | y �i x} is closed for all x ∈ RL

+ and all i ∈ N .

In the proof of Proposition 1, we construct a system of dividend ratios that

allows describing the potential of any economy. Then, Definition 12 together with

the construction in the proof of Proposition 1 lead to the following representation

of the POSh solution restricted to E ′ in terms of dividend ratios:

Corollary 1. There exists a unique essentially single-valued proportional ordinal

Shapley solution restricted to E ′.

Furthermore, for all (N,w,�) ∈ E ′, there exists a vector of dividend yield ratios

(dS)S∈2N\{∅} such that for all N ′ ∈ 2N \{∅}, x ∈ POSh(N ′,w |N ′ ,�|N ′) if and only

if x ∈ E(N ′,w |N ′ ,�|N ′) and xi ∼i (
∏

T3i
T⊆N ′

(1 + dT ))wi for all i ∈ N ′.

Remark 4. Pérez-Castrillo and Wettstein (2006) propose another ordinal solution

for exchange economies, the ordinal Shapley value (OSV ). They also provide a

characterization of the OSV in terms of dividends. However, there is an important

difference between their characterization and ours. For the OSV , the dividends dS

and d′S of the same coalition S ⊆ N ′ for an economy (N,w,�) and its subeconomy

(N ′,w |N ′ ,�|N ′), respectively, may be different. By contrast, for the POSh, the

dividend ratios of the same coalition of an economy and its subeconomy are the

same. In this sense, our characterization is closer in spirit to Harsanyi’s (1959)

characterization of the Shapley value in the set of TU games.

We now consider the economies including empty agents. We note that the

uniqueness of the potential function cannot be extended to the set of economies
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including empty agents. In particular, for an empty economy (N,w,�), the poten-

tial of each subeconomy (S,w |S,�|S) for S ∈ 2N \{∅} can be assigned an arbitrary

positive number P (S,w |S,�|S).

Given that the potential function and the POSh exist for economies without

empty agents, it is useful to consider, for each economy, the subeconomy that con-

tains only the set of non-empty agents of the original economy. Formally, we define

the support of the economy (N,w,�) as the subeconomy where an agent i ∈ N

participates if and only if wi 6= 0. The support of the economy (N,w,�) is denoted

by supp(N,w,�). Similarly, we denote by 0(N,w,�) the subeconomy of (N,w,�)

where only the empty agents participate. Thus, each economy (N,w,�) can be

decomposed into two disjoint subeconomies: supp(N,w,�) and 0(N,w,�).

Using the notion of the support of an economy, we can propose an extension of

the potential function to the unrestricted domain as follows: (a) the potential of an

economy consisting of empty agents only is equal to 1, and (b) the potential of an

economy with both empty agents and non-empty agents is equal to the potential of

its support. Moreover, we will show that this potential is associated with the unique

essentially single-valued POSh of any economy with empty and non-empty agents.

We will state these results in Theorem 1.

To establish the uniqueness of the POSh, we will use the relationship between

the POSh of any pure exchange economy and the POSh of the support of that

economy. We will also use the properties on empty agents that every POSh satisfies

and that are stated and proven in Proposition 2.

Proposition 2. Any proportional ordinal Shapley solution in E satisfies the empty-

agent property and the empty-agent out property.

Proposition 2 highlights that any POSh solution treats the empty agents as if

they would not participate in the economy. They do not obtain any surplus (since

they do not contribute to it) and they do not influence the sharing of the surplus

allocated to the rest of the agents. Thus, Proposition 2 indicates that an empty

agent can be viewed as a placeholder under any POSh.

Given that every proportional ordinal Shapley solution satisfies the empty-agent

property and the empty-agent out property, its prescription for agents in a general
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economy can distinguish between empty and non-empty agents. On the one hand, an

empty agent is prescribed a zero bundle by the empty-agent property. On the other

hand, a non-empty agent is prescribed a bundle equal to some bundle prescribed

by the POSh for the support of this economy by the empty-agent out property.

Hence, we deduce the uniqueness of the POSh for the unrestricted domain from the

uniqueness of the POSh for the economies without any empty agents.

Theorem 1. There exists a unique essentially single-valued proportional ordinal

Shapley solution in E.

Furthermore, for all (N,w,�) ∈ E, there exists a vector of dividend yield ratios

(dS)S∈2N\{∅} such that for all N ′ ∈ 2N \{∅}, x ∈ POSh(N ′,w |N ′ ,�|N ′) if and only

if x ∈ E(N ′,w |N ′ ,�|N ′) and xi ∼i (
∏

T3i
T⊆N ′

(1 + dT ))wi for all i ∈ N ′.

From here onward, we will refer to the proportional ordinal Shapley solution

since it is unique.

We recall that Theorem 1 establishes the existence and uniqueness of the propor-

tional ordinal Shapley solution for pure exchange economies where preferences are

(in addition to reflexive, complete, and transitive) continuous and strongly mono-

tone. The requirements for the existence of the POSh are incomparable with those

for Walrasian equilibrium. Indeed, the existence of Walrasian equilibrium requires

each agent’s preference to be continuous, convex, and non-satiated, and each agent’s

endowment strictly positive (see Border, 2017). On the one hand, strong monotonic-

ity is a stronger assumption than non-satiation. On the other hand, neither convex

preferences nor strictly positive endowment is needed for the existence of the POSh.

We have seen that the POSh exists, and it is unique and essentially single-valued.

Moreover, it satisfies the empty-agent and the empty-agent out properties. The last

part of the section provides four additional properties of the POSh. First, we show

that the POSh is individually rational.

Proposition 3. The proportional ordinal Shapley solution satisfies individual ratio-

nality in E.

Second, we show that the POSh satisfies the properties of anonymity and neu-

trality. That is, it is immune to changes in the names of the agents and commodities.
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Proposition 4. The proportional ordinal Shapley solution satisfies anonymity and

neutrality in E.

The last two properties of the POSh state that it is robust against agents’

manipulation of their initial endowment. Proposition 5 shows that an agent never

has an incentive to throw away any part of his initial endowment, that is, the POSh

is not D-manipulable. Finally, Proposition 6 states that an agent is never better-off

by transferring part of his initial endowment to another agent. Thus, the POSh

does not exhibit the transfer paradox.

Proposition 5. The proportional ordinal Shapley solution is not D-manipulable in

E.

Proposition 6. The proportional ordinal Shapley solution does not exhibit the trans-

fer paradox in E.

4 A mechanism implementing the proportional

ordinal Shapley solution

In this section, we propose a new version of the Pérez-Castrillo and Wettstein’s

(2001) and (2002) bidding mechanism to implement the proportional ordinal Shapley

solution.

In the original bidding mechanism, the agents first bid to each other to try to

become the proposer. The proposer must honor his bids, but he earns the right to

propose the division of the surplus, which can be either accepted or rejected.7

Given the defining characteristics of the POSh, our mechanism differs from

previous proposals in two aspects: (i) a bid is interpreted as a promise to transfer a

fixed proportion of resources; and (ii) in case of a rejection of his allocation plan, the

proposer’s payments due to his bid are delivered at the very end of the mechanism.

We implement the POSh for any number of agents. However, we impose three

additional constraints or modifications to the set of economies that we consider in

7 Pérez-Castrillo and Wettstein (2005) also use a variant of this mechanism to implement the

OSV for economies with at most three agents.
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this section: (a) The agents’ preferences are homothetic;8 (b) no empty agent is

present in the economy; and (c) the common domain of each agent i’s preference

is extended from RL
+ to RL by letting x ≺i y if x ∈ RL \ RL

+ and y ∈ RL
+ and

x ∼i y if x,y ∈ RL \ RL
+ for all i ∈ N . We extend the domain because, out of

equilibrium, there may exist a solvency issue if the rejected proposer does not have

enough endowment to pay the bids at the end of the mechanism. We denote by

EH the subset of economies where preferences are reflexive, complete, transitive,

strongly monotone, and continuous, and that satisfy conditions (a)-(c) above.

We propose the following proportional bidding mechanism for EH :

For |N | = 1, for the economy ({i},wi,�i), the only agent i receives his own

initial endowment wi.

For |N | ≥ 2, we hypothesize that the mechanism has been defined for each

economy (N ′,w′,�′) with |N ′| < |N |. Then the mechanism applied for an economy

(N,w,�) proceeds as follows:

t = 1: Each agent i ∈ N submits a bid bNij ∈ R++ for each agent j ∈ N , with∏
j∈N b

N
ij = 1.

t = 2: Let the cumulative bid for agent i ∈ N be denoted by BN
i ≡

∏
j∈N b

N
ji . An

agent α ∈ argmaxi∈N B
N
i is selected as the proposer by a non-degenerate

lottery.9 Then the proposer α puts forth an allocation plan xN ∈ R(N\{α})×L

specifying a bundle xNi ∈ RL
+ for each agent i ∈ N \ {α}.

t = 3: Each agent i ∈ N \{α} accepts or rejects α’s plan sequentially. We distinguish

between two cases:

Case I: Every agent accepts α’s plan. Then the grand coalition N forms, and the

plan is implemented. The final outcome is that each agent i ∈ N \{α} re-

ceives xNi and the proposer α receives the residue
∑

j∈N wj−
∑

i∈N\{α} x
N
i .

8 Agent i’s preference �i is homothetic if for all x,y ∈ RL
+ and all α ∈ R+, x �i y if and

only if αx �i αy.
9 A non-degenerate lottery selects each agent from argmaxi∈N BN

i with a strictly positive

probability.
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Case II: Some agent rejects α’s plan. Then the proposer forms his own standalone

coalition {α}. Moreover, the mechanism is applied to the subeconomy

(N \{α},w|N\{α},�|N\{α}). Let yi ∈ RL be the bundle received by agent

i ∈ N\{α} from the mechanism played by (N\{α},w|N\{α},�|N\{α}). On

top of that, the proposer α transfers a commodity bundle

(
n
√
BNα
bNiα
− 1

)
yi

to each agent i ∈ N \ {α}. Therefore, the final commodity bundle is(
n
√
BNα
bNiα

)
yi for each i ∈ N \{α}, and it is wα−

∑
i∈N\{α}

(
n
√
BNα
bNiα
− 1

)
yi

for the proposer α.

Before presenting the main result of this section, we provide a characterization

of the proportional ordinal Shapley solution in terms of “proportional concessions,”

which bears some resemblance with the original Pérez-Castrillo and Wettstein’s

(2006) definition of the OSV . The characterization is interesting by itself. It will

also allow us to simplify the proof of the implementation theorem.

Definition 13 proposes a solution ζ for E , and Proposition 7 states that it coin-

cides with the POSh.

Definition 13. The solution ζ : E  
⋃
N RN×L

+ is defined recursively on the number

of agents |N | as follows:

1. For |N | = 1, i.e., N = {i}, ζ({i},wi,�i) ≡ {wi}.

2. For |N | ≥ 2, we hypothesize that ζ has been defined and is essentially single-

valued for each economy (N ′,w′,�′) with |N ′| < |N |. Then, x ∈ ζ(N,w,�) if

x ∈ E(N,w,�) and there exists a concession vector (cNij )j∈N\{i} ∈ RN\{i} for

each i ∈ N that satisfies:

(a)
∏

j∈N\{i} c
N
ij =

∏
j∈N\{i} c

N
ji for each i ∈ N ; and

(b) for each j ∈ N \ {i}, there exists aNij ∈ R such that aNijwj ∼j ζj(N \

{i},w |N\{i},�|N\{i}) and xj ∼j cNijaNijwj.

We can read part (2b) of Definition 13 as follows. Agent j must be indifferent

between the bundle that the solution prescribes to him (xj) and a bundle (aNijwj)

that is equivalent to what he can obtain without agent i according to the solution,
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boosted by the concession cNij of agent i to agent j. Condition (2a) states the

“fairness” requirement that the concessions that an agent receives in total (which

in our framework corresponds to their product) be the same as the concessions that

he makes to the other agents.

Proposition 7 states the characterization of the POSh in terms of concessions.

Proposition 7. The proportional ordinal Shapley solution coincides with the solu-

tion ζ.

An implication of Proposition 7 is that the vector of concessions for an economy

(N,w,�) is unique, given that the POSh is essentially single-valued.

Theorem 2 uses Proposition 7 to show that the proportional ordinal bidding

mechanism implements the POSh in subgame perfect Nash equilibrium in pure

strategies (SPNE) when the agents’ preferences are homothetic, and their endow-

ments are not zero. In the proof, we relate the equilibrium bids in the mechanism

and the concessions in Definition 13.

Theorem 2. The proportional bidding mechanism implements the proportional or-

dinal Shapley solution in SPNE in the set of economies with homothetic preferences

and without empty agents.

5 Conclusion

We espouse a new ordinal solution concept for pure exchange economies, the POSh

solution. Its construction is inspired by the potential function, which allows a nice

characterization of the Shapley value in TU games. The POSh solution satisfies

properties similar to the Shapley value, such as efficiency, anonymity, and properties

related to null players. It is also individually rational and does not suffer from agents’

manipulation of their initial endowment.

We further highlight the link between the POSh for pure exchange economies

and the Shapley value for TU games through their implementation. We show that

a variant of a mechanism that implements the Shapley value implements the POSh

for the particular environments where agents’ preferences are homothetic.
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One natural avenue for future research is extending our solution concept and its

properties to pure exchange economies with a continuum of agents of finite types. It

is easy to extend the notions of the potential and the proportional ordinal Shapley

solution to these economies. However, the analysis of the properties of the POSh

in these environments is outside the scope of this paper.

Appendix

Proof of Proposition 1. First, we show that there exists at most one potential func-

tion. Suppose otherwise, that is, suppose that there exist two distinct potential

functions P and P ′. Then, without loss of generality, assume that for (N,w,�), it

happens that P (N,w,�) > P ′(N,w,�) and P (S,w|S,�|S) = P ′(S,w|S,�|S) for

all S ∈ 2N \ {N}. This implies that there exist two allocations x,y ∈ E(N,w,�)

such that xk ∼k P (N,w,�)
P (N\{k},w|N\{k},�|N\{k})

wk �k P ′(N,w,�)
P ′(N\{i},w|N\{k},�|N\{k})

wk ∼k yk for

all k ∈ N , where the strict preference follows from strong monotonicity and the

premise on P and P ′. However, this contradicts the premise that y ∈ E(N,w,�).

Therefore, there exists at most one potential function.

Second, to prove the existence of a potential function, we construct inductively

a system of dividend ratios (dS)S∈2N\{∅} for each economy (N,w,�) ∈ EN :

1. For |S| = 1, dS ≡ 0;

2. for |S| ≥ 2, we hypothesize that dT has been defined for each T ∈ 2S \ {∅}.

Then, we define dS ≡ sup{d ∈ [−1,+∞) | ∃x ∈ Z(S,w |S,�|S) such that

(1 + d)(
∏

T3i
T(S

(1 + dT ))wi ∼i xi for all i ∈ S}.

Notice that dS is well-defined for |S| ≥ 2. Indeed, we check that the supremum

operates on a non-empty set: d = −1 is in the set since (1−1)(
∏

T3i
T(S

(1+dT ))wi ∼i 0

for all i ∈ S and 0 ∈ Z(S,w |S,�|S).

Next, we claim that dS satisfies that (
∏

T3i
T⊆S

(1 + dT ))wi ∼i xi for all i ∈ S and

some x ∈ E(S,w |S,�|S). Note that dS satisfies that there exists x ∈ E(S,w|S,�|S)

such that (
∏

T3i
T⊆S

(1 + dT ))wi �i xi for all i ∈ S because each agent’s preference is

continuous and Z(S,w |S,�|S) is closed. We prove our claim by contradiction:
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if there exists k ∈ S such that (
∏

T3k
T⊆S

(1 + dT ))wk ≺k xk, then it is possible to

construct an alternative feasible allocation profile y ∈ Z(S,w |S,�|S) such that

(
∏

T3i
T⊆S

(1+dT ))wi ≺i yi for all i ∈ S. The existence of the profile y would imply that

the supremum was not attained at dS since dS could be increased by a sufficiently

small amount without violating feasibility. To construct y from x, first note that

0 �k (
∏

T3k
T⊆S

(1 + dT ))wk ≺k xk, hence xkh > 0 for some h ∈ L. Define y by

yig ≡


xig if i ∈ S and g ∈ L \ {h},

xig − ε if i = k and g = h,

xig + ε
|S|−1 if i ∈ S \ {k} and g = h,

where ε ∈ R++ is sufficiently small so that (
∏

T3k
T⊆S

(1 + dT ))wk ≺k yk and ykh ≥ 0.

By strong monotonicity, we have (
∏

T3i
T⊆S

(1 + dT ))wi ≺i yi for all i ∈ S.

Therefore, we have proven the existence of dividend ratios (dS)S∈2N\{∅} that

satisfy that, for each S ∈ 2N \ {∅}, there exists x ∈ E(S,w |S,�|S) such that

(
∏

T3i
T⊆S

(1 + dT ))wi ∼i xi for all i ∈ S.

We can now construct the potential function:

P (N,w,�) ≡
∏

S∈2N\{∅}

(1 + dS)

for N 6= ∅ and P (∅) = 1. The function P (N,w,�) satisfies the conditions in

Definition 11 given the construction of the dividend ratios. This establishes the

existence of a potential function restricted to E ′.

Proof of Corollary 1. The existence, uniqueness, and essential single-valuedness of

POSh restricted to E ′ follows from Proposition 1 and Definition 12. The representa-

tion in terms of dividend ratios follows from
P (N ′,w|N′ ,�|N′ )

P (N ′\{i},w|N′\{i},�|N′\{i})
=

∏
T⊆N′ (1+dT )∏

T⊆N′\{i}(1+dT )
=∏

T3i
T⊆N ′

(1 + dT ).

Proof of Proposition 2. The empty-agent property follows from the efficiency im-

plied by Definition 12, once we will prove the empty-agent out property, which we

now do.

First, we claim that any potential function satisfies

P (N,w,�) = P (supp(N,w,�))P (0(N,w,�)). (1)
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We prove equation (1) by induction on p, by which we denote the number of non-

empty agents of an economy (N,w,�) with q empty agents (q is an arbitrary fixed

positive number). The equation holds trivially for an economy with only q empty

agents, i.e, when p = 0. Now we consider an economy (N,w,�) with p ≥ 1 non-

empty agents and q empty agents. Denote by x ∈ E(supp(N,w,�)) an allocation

profile satisfying that xi ∼i P (supp(N,w,�))
P (supp(N\{i},w|N\{i},�|N\{i}))

wi for all non-empty agent i.

The allocation x satisfies that for each non-empty agent i,

xi ∼i
P (supp(N,w,�))P (0(N,w,�))

P (supp(N \ {i},w |N\{i},�|N\{i}))P (0(N,w,�))
wi

=
P (supp(N,w,�))P (0(N,w,�))

P (supp(N \ {i},w |N\{i},�|N\{i}))P (0(N \ {i},w |N\{i},�|N\{i}))
wi

=
P (supp(N,w,�))P (0(N,w,�))

P (N \ {i},w |N\{i},�|N\{i})
wi,

where the first equality follows from the premise that i is not an empty agent and

the second from the induction hypothesis (there exist p − 1 non-empty agents in

(N \{i},w |N\{i},�|N\{i})). Then consider a new allocation profile y ∈ E(N,w,�),

where yj = xj for each non-empty agent j and yk = 0 for each empty agent k. Notice

that the constructed profile y satisfies that yi ∼i P o(N,w,�)
P (N\{i},w|N\{i},�|N\{i})

wi for all

i ∈ N , where we define P o(N,w,�) = P (supp(N,w,�))P (0(N,w,�)). Moreover,

by strong monotonicity, p ≥ 1, and an argument similar to that establishing the

uniqueness of the potential function restricted to E ′ in Proposition 1, we have that

the numerical value of the potential is unique, hence P o(N,w,�) = P (N,w,�).

Finally, since q is arbitrary, we have proven the equation (1), which immediately

implies the empty-agent out property of any POSh.

Proof of Theorem 1. Let us denote POSh′ the proportional ordinal Shapley solution

restricted to E ′, which is unique and essentially single-valued by Corollary 1. First,

by Proposition 2, any POSh for E satisfies the empty-agent property and the empty-

agent out property. Therefore, for any POSh and any (N,w,�),

POShi(N,w,�) ≡


0 if wi = 0,

POSh′i(supp(N,w,�)) if wi 6= 0.

(2)

Hence, if POSh exists for E , it is also unique and essentially single-valued.
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Second, let us denote P ′ the potential associated with POSh′ in E ′. We now

propose the following potential function P : E → R:

P (N,w,�) ≡


1 if wi = 0 for all i ∈ N

P ′(supp(N,w,�)) otherwise.

(3)

We show that the function P can be associated with the POSh that we constructed

in (2) for E ; that is, P (N,w,�)
P (N\{i},w|N\{i},�|N\{i}))

wi ∼i xi for all x ∈ POSh(N,w,�) and

all i ∈ N . If wi = 0, then the result is immediate because POShi(N,w,�) =

0. Otherwise, consider an economy (N,w,�) where i is a non-empty agent, and

x ∈ POSh(N,w,�). Then, equation (2) states that x ∈ POSh′i(supp(N,w,�)).

Therefore, xi ∼i P ′(supp(N,w,�))
P ′(supp(N\{i},w|N\{i},�|N\{i})))

wi = P (N,w,�)
P (N\{i},w|N\{i},�|N\{i}))

wi.

Moreover, let N ′ ⊆ N be the set of non-empty agents in (N,w,�). Then

x ∈ E(N,w,�) and xi ≡ 0 for all i ∈ N \N ′ if and only if x |N ′∈ E(supp(N,w,�)).

Thus, the constructed P : E → R is a potential function associated with the POSh

for E , which means that there exists a POSh for E .

Finally, we show the existence of the vector of dividend ratios. For the coalitions

without empty agents, that is, in the supp(N,w,�)), we take the vector found in

Corollary 1. Additionally, we define dS ≡ 0 for each S ∈ 2N \ {∅} if there exists an

empty agent in S.

To verify that the previous vector of dividend ratios satisfies the condition stated

in the theorem, it suffices to show that P (N,w,�) =
∏

T∈2N\{∅}(1+dT ) for a general

economy (N,w,�). We prove this by induction on the number of non-empty agents.

It is easy to see that P (N,w,�) =
∏

T∈2N\{∅}(1 + dT ) = 1 holds when (N,w,�)

consists of empty agents only. Now consider an economy (N,w,�) in which i is a

non-empty agent. Let N ′ ⊆ N be the set of all non-empty agents. Then, for any x ∈

POSh(N,w,�), xi ∼i P (N,w,�)
P (N\{i},w|N\{i},�|N\{i}))

wi = P ′(supp(N,w,�))
P ′(supp(N\{i},w|N\{i},�|N\{i})))

wi =∏
T∈2N′ \{∅}(1+dT )∏

T∈2N′\{i}\{∅}
(1+dT )

wi =
∏
T∈2N\{∅}(1+dT )∏

T∈2N\{i}\{∅}(1+dT )
wi =

∏
T∈2N\{∅}(1+dT )

P (N\{i},w|N\{i},�|N\{i}))
wi, where the

last equality follows from the induction. Thus, P (N,w,�) =
∏

T∈2N\{∅}(1+dT ).

Proof of Proposition 3. By Theorem 1, we have that xi ∼i (
∏

T3i
T⊆N

(1 + dT ))wi for

all i ∈ N , all x ∈ POSh(N,w,�), and all (N,w,�) ∈ E , where (dS)S∈2N\{∅} is

the vector of dividend ratios corresponding to POSh(N,w,�). We show that xi ∼i
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(
∏

T3i
T⊆N

(1 +dT ))wi �i wi by induction on |N |. Since POShi({i},wi,�i) = {wi} for

N = {i}, our assertion trivially holds for |N | = 1.

For |N | > 1, assume that the property holds for any economy with less than |N |

agents. Suppose now, by contradiction, that it does not hold for (N,w,�), that

is, there exists i ∈ N such that xi ∼i (
∑

T3i
T⊆N

(1 + dT ))wi ≺i wi. Then there must

exist j ∈ N \ {i} such that xj �j (
∏

T3j
T⊆N\{i}

(1 + dT ))wj. The existence of such an

agent j follows from x ∈ E(N,w,�), xi ≺i wi, and the feasibility of the allocation

that assigns agent i with wi and the rest of agents with a bundle prescribed by

POSh(N \ {i},w |N\{i},�|N\{i}), which is individually rational by the induction

hypothesis. Therefore, there exists j ∈ N \ {i} such that (
∏

T3j
T⊆N

(1 + dT ))wj ∼j

xj �j (
∏

T3j
T⊆N\{i}

(1 + dT ))wj. Agent j’s strict preference (
∏

T3j
T⊆N

(1 + dT ))wj �j

(
∏

T3j
T⊆N\{i}

(1 + dT ))wj implies that
∏

T3i,j
T⊆N

(1 + dT ) > 1 by strong monotonicity.

By the induction hypothesis, we have (
∏

T3i
T⊆N\{j}

(1 + dT ))wi �i wi. Together

with the inequality
∏

T3i,j
T⊆N

(1 + dT ) > 1, it implies that xi ∼i (
∏

T3i
T⊆N

(1 + dT ))wi =

(
∏

Q3i,j
Q⊆N

(1 + dQ))(
∏

T3i
T⊆N\{j}

(1 + dT ))wi �i (
∏

T3i
T⊆N\{j}

(1 + dT ))wi �i wi, which con-

tradicts our assumption. Therefore, the POSh satisfies individual rationality.

Proof of Proposition 4. We prove anonymity and neutrality separately. We first

prove anonymity of the POSh. It is easy to see that the efficient allocation corre-

spondence is anonymous, that is, x ∈ E(N,w,�) if and only if πx ∈ Eπ(N,w,�),

for all bijection π : N → N ′ and all (N,w,�) ∈ E .

Consider the economies (N,w,�) and π(N,w,�). Take x ∈ POSh(N,w,�)

and let (dT )T∈2N\{∅} be its vector of dividend ratios. We are going to show that

πx ∈ POShπ(N,w,�) by proving that (d′π[T ])T∈2N\{∅}, with d′π[T ] = dT for all

T ∈ 2N \ {∅}, constitutes a vector of dividend ratios for πx. Indeed, for each

S ∈ 2N \ {∅}, and each y ∈ POSh(S,w |S,�|S), yi ∼i (
∏

T∈2S\{∅}(1 + dT ))wi

for all i ∈ S, which is equivalent to ((π |S)y)π(i) ∼ππ(i) (
∏

T∈2π[S]\{∅}(1 + dT ))wπ(i)

for all i ∈ S, i.e., ((π |S)y)j ∼πj (
∏

T∈2π[S]\{∅}(1 + dT ))wj for all j ∈ π[S]. Hence,

(d′π[T ])T∈2N\{∅} is a vector of dividend ratios for π(N,w,�) which, according to

Theorem 1, implies that πx ∈ POShπ(N,w,�).

To prove neutrality, again it is easy to see that the efficient allocation correspon-

dence is neutral, that is, x ∈ E(N,w,�) if and only if ρx ∈ Eρ(N,w,�), for all
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bijection ρ : L→ L′ and all (N,w,�) ∈ E .

Consider the economies (N,w,�) and ρ(N,w,�), x ∈ POSh(N,w,�), and let

(dT )T∈2N\{∅} be its vector of dividend ratios. We show that ρx ∈ POShρ(N,w,�)

by proving that (d′T )T∈2N\{∅}, with d′T = dT for all T ∈ 2N \{∅}, constitutes a vector

of dividend ratios for ρx. To see this, we note that for each S ∈ 2N\{∅} and each y ∈

POSh(S,w |S,�|S), yi ∼i (
∏

T∈2S\{∅}(1 + dT ))wi for all i ∈ S, which is equivalent

to (ρy)i ∼ρi (
∏

T∈2S\{∅}(1 + dT ))(ρw)i for all i ∈ S. Therefore, (d′T )T∈2N\{∅} is a

vector of dividend ratios for ρ(N,w,�); hence, ρx ∈ POShρ(N,w,�)

Proof of Proposition 5. Consider two economies (N,w,�), (N,w′,�) ∈ E such that

wi > w′i for i ∈ N and wj = w′j for each j ∈ N \ {i}. Using Theorem 1, we

denote by (dS)S∈2N\{∅} and (d′S)S∈2N\{∅} their associated vectors of dividend ratios,

respectively. We claim that
∏

T3i
T⊆S

(1 + dT ) ≥
∏

T3i
T⊆S

(1 + d′T ) for all S ⊆ N such that

S 3 i. We prove the claim by induction on |S|. It trivially holds for |S| = 1.

For S ⊆ N such that |S| > 1, suppose by contradiction that
∏

T3i
T⊆S

(1 + dT ) <∏
T3i
T⊆S

(1 + d′T ) and
∏

T3i
T⊆R

(1 + dT ) ≥
∏

T3i
T⊆R

(1 + d′T ) for all R ( S. In particular,∏
T3i

T⊆S\{j}
(1 + dT ) ≥

∏
T3i

T⊆S\{j}
(1 + d′T ) for all j ∈ S \ {i}. Then, for each j ∈ S \ {i},∏

T3i,j
T⊆S

(1+dT ) <
∏

T3i,j
T⊆S

(1+d′T ) since
∏

T3i
T⊆S

(1+dT ) =
∏

T3i,j
T⊆S

(1+dT )
∏

T3i
T⊆S\{j}

(1+dT ).

Then, it is also true that
∏

T3j
T⊆S

(1 + d′T ) = (
∏

T3j
T⊆S\{i}

(1 + d′T ))(
∏

T3i,j
T⊆S

(1 + d′T )) =

(
∏

T3j
T⊆S\{i}

(1 + dT ))(
∏

T3i,j
T⊆S

(1 + d′T )) >
∏

T3j
T⊆S

(1 + dT ) for all j ∈ S \ {i}. Thus,

POShj(S,w|S,�|S) ≺j POShj(S,w′ |S,�|S) for all j ∈ S (including i himself by

premise), which is impossible. Therefore, the POSh is not D-manipulable.

Proof of Proposition 6. Consider two economies (N,w,�), (N,w′,�) ∈ E such that

wi > w′i, wi + wj = w′i + w′j for donor i and recipient j; wk = w′k for each

k ∈ N \ {i, j}. By Theorem 1, let (dT )T∈2N\{∅} and (d′T )T∈2N\{∅} be vectors of

dividend ratios for economies (N,w,�) and (N,w′,�), respectively. By considering

the subeconomies without player j and without player i, Proposition 5 implies that∏
T3i

T⊆N\{j}
(1 + dT ) ≥

∏
T3i

T⊆N\{j}
(1 + d′T ) and

∏
T3j

T⊆N\{i}
(1 + dT ) ≤

∏
T3j

T⊆N\{i}
(1 + d′T ).

Assume that the donor i is better off in POSh(N,w′,�) than in POSh(N,w,�),

which means that
∏

T3i
T⊆N

(1 + dT ) <
∏

T3i
T⊆N

(1 + d′T ). The inequality implies that∏
T3i,j
T⊆N

(1 + dT ) <
∏

T3i,j
T⊆N

(1 + d′T ). Then
∏

T3j
T⊆N\{i}

(1 + dT )(
∏

T3i,j
T⊆N

(1 + dT )) <
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(
∏

T3j
T⊆N\{i}

(1 + d′T ))(
∏

T3i,j
T⊆N

(1 + d′T )), i.e.,
∏

T3j
T⊆N

(1 + dT ) <
∏

T3j
T⊆N

(1 + d′T ). Thus,

recipient j must also be better off in (N,w′,�). Therefore, the transfer paradox is

not possible for the POSh

Proof of Proposition 7. To prove ζ = POSh, we first show that POSh ⊆ ζ, and

then that ζ is essentially single-valued.

We prove that POSh ⊆ ζ. Recall that there exists a vector of dividend ratios

(dS)S∈2N\{∅} such that x ∈ POShi(N,w,�) if and only if x ∼i (
∏

T3i
T⊆N

(1 + dT ))wi

for all i ∈ N . Also, POShj(N \ {k},w |N\{k},�|N\{k}) ∼j (
∏

T3j
T⊆N\{k}

(1 + dT ))wj for

all k ∈ N and all j ∈ N \{k}. Take aij ≡
∏

T3j
T⊆N\{i}

(1+dT ) and cij ≡
∏

T3i,j
T⊆N

(1+dT )

for all j ∈ N \ {i} and all i ∈ N . Then, x together with the vectors (cij)j∈N\{i} and

(aij)j∈N\{i} for all i ∈ N , satisfy part (2b) of Definition 13. Moreover, cij = cji for all

j ∈ N \ {i} and all i ∈ N . Hence, part (2a) of Definition 13 also holds. Therefore,

POSh ⊆ ζ.

We prove that ζ is essentially single-valued by induction on the number of agents

|N |. It trivially holds for |N | = 1 by definition. For |N | > 1, we hypothesize that ζ

is essentially single-valued for any economy with n− 1 agents. It implies that aNij in

Definition 13 is unique (that is, it is the same for all x ∈ ζ(N,w,�)) for all i, j ∈ N

such that i 6= j.

Consider any x ∈ ζ(N,w,�). According to (2b) in Definition 13, it is the case

that xj ∼j cNijaNijwj and xj ∼j cNkjaNkjwj, for all j ∈ N and all i, k ∈ N \{j} such that

i 6= k. Then, strong monotonicity implies that cNija
N
ij = cNkja

N
kj for all i, k ∈ N \ {j}

such that i 6= k.

Therefore, we have |N |(|N |− 1) equations: cNi1n =
aNn1
aNi1
cNn1 for all i ∈ N \ {1}, and

cNij =
aN
(j−1)j

aNij
cN(j−1)j for all i ∈ N \ {j} and all j ∈ N \ {1}. By substituting them in

condition (2a),
∏

j∈N\{i} c
N
ij =

∏
j∈N\{i} c

N
ji , we have

aNn1
aNi1
cNn1[
∏

j∈N\{1,i}
aN
(j−1)j

aNij
cN(j−1)j] =∏

j∈N\{i}
aN
(i−1)i

aNji
cN(i−1)i for i ∈ N \ {1}. From this equality we obtain that cN(i−1)i =

1
aN
(i−1)i

n−1

√
aNn1
aNi1
cNn1[
∏

j∈N\{1,i}
aN
(j−1)j

aNij
cN(j−1)j][

∏
j∈N\{i} a

N
ji ] for each i ∈ N \ {1}. It means

that cN(i−1)i can be expressed as an increasing function of (cN(k−1)k)k∈N\{1,i} and cNn1

as its arguments, for each i ∈ N \ {1}. Moreover, by repeated substitution, we can

represent each cN(i−1)i as an increasing function of cNn1 solely, for all i = N\{1}. Hence,
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cN(i−1)i takes the form cN(i−1)i(c
N
n1) for i = 2, . . . , n. Thus, for all x ∈ ζ(N,w,�), x1 ∼1

cNn1a
N
n1w1, and xi ∼i cN(i−1)i(cNn1)aN(i−1)iwi for all i = 2, . . . , n. By Pareto efficiency

of x, cn1 is unique. Therefore, ζ is essentially single-valued, which completes the

proof.

Proof of Theorem 2. To formalize our argument, we introduce the following nota-

tion. Applying the mechanism to an economy (N,w,�) results in an extensive

form game, which is denoted by Γ (N,w,�). Denote the SPNE outcome corre-

spondence by SN , which enables us to express the set of all SPNE outcomes of

an extensive form game as the value of SN at this game. For example, the set of

all SPNE outcomes of Γ (N,w,�) is SNΓ (N,w,�). Furthermore, if x ∼ y for all

x,y ∈ SNΓ (N,w,�), we may write SN iΓ (N,w,�) and compare it with a bundle

in terms of �i for all i ∈ N without incurring confusion. We may also consider the

subgames of Γ (N,w,�). We denote by Γ−i
bN

(N,w,�) the subgame starting from

the information set after the proposer i’s allocation plan is rejected and the bids

made were bN . In particular, the bids made for i were bNji for all j ∈ N .

The proof has three parts: (i) for all (N,w,�) ∈ EH , all x ∈ SNΓ (N,w,�),

and all y ∈ E(N,w,�), then y ∈ SNΓ (N,w,�) if y ∼ x; (ii) SNΓ (N,w,�

) ⊆ POSh(N,w,�) for every (N,w,�) ∈ EH ; and (iii) SNΓ (N,w,�) 6= ∅

for every (N,w,�) ∈ EH . Note that parts (i)-(iii) imply that SNΓ (N,w,�) =

POSh(N,w,�).

We prove the three parts simultaneously by induction on |N |. The case where

|N | = 1 is trivial, so we restrict attention to the cases where |N | ≥ 2. We assume the

induction hypothesis that (i)-(iii), and consequently the implementation of POSh

by the bidding mechanism, hold for all economies with less than n agents.

To prove part (i), we first state and prove two claims. We notice that the set of

agents in Γ−i
bN

(N,w,�) is N where the set of agents in Γ (N \ {i},w |N\{i},�|N\{i})

is N \ {i}. However, the sets of SPNE of the extensive-form games Γ−i
bN

(N,w,�)

and Γ (N \ {i},w |N\{i},�|N\{i}) are “similar” in the following sense:

Claim 1. Given bN and y′ ∈ Z(N \ {i},w |N\{i},�|N\{i}), define y ∈ Z(N,w,�)
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by

yj =


(

n
√
BNi
bNji

)
y′j if j ∈ N \ {i};

wi −
∑

k∈N\{i}

(
n
√
BNi
bNki
− 1

)
y′k if j = i.

Then y ∈ SNΓ−i
bN

(N,w,�) if y′ ∈ SNΓ (N \ {i},w |N\{i},�|N\{i}).

We prove Claim 1. Let (sk)k∈N\{i} be an SPNE strategy profile for Γ (N \

{i},w |N\{i},�|N\{i}) whose outcome is y′. The final outcome in Γ−i
bN

(N,w,�) if

the agents play (sk)k∈N\{i} is y (note that although the game Γ−i
bN

(N,w,�) in-

volves all the agents in N , only those in N \ {i} choose a strategy) . We prove

that (sk)k∈N\{i} is an SPNE for Γ−i
bN

(N,w,�). Suppose otherwise. Let s′j be a

profitable deviation for j ∈ N \ {i} in Γ−i
bN

(N,w,�). After the deviation, j ob-

tains a bundle zj which is multiplied by

(
n
√
BNi
bNji

)
and such that

(
n
√
BNi
bNji

)
zj �j

yj =

(
n
√
BNi
bNji

)
y′j. Since the preferences are homothetic, we have that zj �j y′j.

However, if j deviates in Γ (N \ {i},w |N\{i},�|N\{i}) from (sk)k∈N\{i} by choosing

s′j, then he obtains the allocation zj, which he prefers to y′j. This is not possible

because y′ ∈ SNΓ (N \ {i},w |N\{i},�|N\{i}). Hence, (sk)k∈N\{i} is an SPNE for

Γ−i
bN

(N,w,�) and y ∈ SNΓ−i
bN

(N,w,�), which concludes the proof of Claim 1.

We note that following the same arguments as in the proof of Claim 1, the

reverse result also holds. That is, given bN and y ∈ SNΓ−i
bN

(N,w,�), define

y′ by y′j =

(
bNji

n
√
BNi

)
yj for all j ∈ N \ {i}. We note that y′ ∈ Z(N \ {i},w |N\{i}

,�|N\{i}) because y′j is the allocation that player j obtains in the game Γ−i
bN

(N,w,�)

before the rejected proposer i transfers the bundles according to bN (see Case II at

t = 3 as described in the proportional bidding mechanism); hence,
∑

k∈N\{i} y
′
k =∑

k∈N\{i}wk. Then y′ ∈ SNΓ (N \ {i},w |N\{i},�|N\{i}) if y ∈ SNΓ−i
bN

(N,w,�).

By the induction hypothesis, we have that SNΓ (N \ {i},w |N\{i},�|N\{i}) =

POSh(N \ {i},w |N\{i},�|N\{i}). Then, we use Claim 1 and its reverse to obtain

that SN jΓ
−i
bN

(N,w,�) =
n
√
BNi
bNji

POShj(N \{i},w |N\{i},�|N\{i}) for all j ∈ N \{i}.

With the aid of this equality, we prove that every SPNE outcome can be supported

by an SPNE that leads to an immediate agreement in Claim 2.

Claim 2. For every SPNE outcome x ∈ SNΓ (N,w,�), take an SPNE whose

outcome is x. Let bN be the profile of the agents’ bid vectors in that SPNE and
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consider the subgame where agent i ∈ argmaxk∈N B
N
k becomes the proposer. Then,

a) xj ∼j
n
√
BNi
bNji

POShj(N \ {i},w |N\{i},�|N\{i}) for all j ∈ N \ {i}.

b) There exists an SPNE where:

b1) each agent j ∈ N \ {i} accepts any i’s allocation plan z ∈ R(N\{i})×L
+ if

zj �j
n
√
BNi
bNji

POShj(N \ {i},w |N\{i},�|N\{i}) and rejects it otherwise;

b2) the proposer i puts forth an efficient allocation plan z such that zj ∼j
n
√
BNi
bNji

POShj(N \ {i},w |N\{i},�|N\{i}) for each agent j ∈ N \ {i}.

We prove part a) of Claim 2. Notice that, for any economy (N,w,�) ∈ EH , given

a profile of bid vectors bN and a proposer i ∈ N , then agent j ∈ N \ {i} accepts

at equilibrium any i’s allocation plan z ∈ R(N\{i})×L
+ if zj �j

n
√
BNi
bNji

POShj(N \

{i},w |N\{i},�|N\{i}) and rejects it if zj ≺j
n
√
BNi
bNji

POShj(N \ {i},w |N\{i},�|N\{i}).

This holds because agent j obtains a bundle
n
√
BNi
bNji

POShj(N\{i},w |N\{i},�|N\{i}) in

case of rejection (by the induction hypothesis and Claim 1). Moreover, a proposal z

such that zj �j
n
√
BNi
bNji

POShj(N \ {i},w |N\{i},�|N\{i}) cannot be part of an SPNE.

Such a proposal would be accepted, but i could lower zj by a sufficiently small

amount and propose another acceptable offer resulting in a higher residual bundle

for himself. Therefore, at equilibrium, j necessarily obtains a bundle that makes

him indifferent to the bundle
n
√
BNi
bNji

POShj(N \ {i},w |N\{i},�|N\{i}). Hence, the

equation in part a) holds.

The previous arguments also prove that the strategy proposed in part b1) of

the claim can be part of an equilibrium. To prove part b2), consider an efficient

allocation plan z such that zj ∼j
n
√
BNi
bNji

POShj(N \ {i},w |N\{i},�|N\{i}) ∼j xj for

each agent j ∈ N \ {i}. Part b1) ensures that the agents in N \ {i} will accept

this proposal. Moreover, given that it is efficient, there is no better allocation for i

that would be accepted. Proposing a rejected plan cannot be a profitable deviation

for agent i because rejection leads to a feasible allocation where every j ∈ N \ {i}

obtains a bundle equivalent for him to
n
√
BNi
bNji

POShj(N \{i},w |N\{i},�|N\{i}), which

cannot be strictly better for i than z. Hence, Claim 2 is proven.

We now prove part (i) of our induction. Take an allocation y ∈ E(N,w,�) such

29



that y ∼ x. Then consider the strategy profile that is identical to that in Claim

2 (including the bids) except that agent i proposes y |N\{i} in b2). Given that the

SPNE is an ordinal solution, the strategy profile described in Claim 2 is an SPNE

if and only if the new strategy profile is an SPNE. Therefore, for all SPNE outcome

x ∈ SNΓ (N,w,�) and all y ∈ E(N,w,�) such that y ∼ x, y ∈ SNΓ (N,w,�),

which completes part (i).

We proceed to prove part (ii). We first establish the following property of the

equilibrium bids.

Claim 3. In any SPNE, BN
i = 1 for all i ∈ N . Moreover, each agent i ∈ N is

indifferent about the identity of the proposer.

We first show that each i ∈ N is indifferent about the identity of the proposer

among the agents in argmaxj∈N B
N
j . Let | argmaxj∈N B

N
j | = p. If p = 1, then this

assertion automatically holds. If p ≥ 2, then assume that agent i strictly prefers k to

z as the proposer, for a pair of agents k, z ∈ argmaxj∈N B
N
j (where i could possibly

be either k or z). In this case, agent i has an incentive to deviate by increasing bNik to

(1+ε)bNik and decreasing bNiz to
bNiz
1+ε

, where ε ∈ R++ is sufficiently small. This deviation

would ensure that agent k would become the proposer. There are two cases. Case

(a): If i 6= k then agent i avoids the positive probability of receiving a bundle strictly

worse than
n
√
BNk
bNik

POShi(N \ {k},w |N\{k},�|N\{k}) and ensures receiving a bundle

equivalent for him to
n
√
BNk

(1+ε)bNik
POShi(N \ {k},w |N\{k},�|N\{k}), by Claim 2. This is

a profitable deviation if ε is small enough. Case (b): If i = k then agent i becomes

the proposer. He can put forth an allocation plan such that each agent j ∈ N \ {i}

is assigned a bundle ∼j-equivalent to
n
√

(1+ε)BNi
bNji

POShj(N \ {i},w |N\{i},�|N\{i}),

and the plan will be accepted, by Claim 2. As before, by continuity of �i, agent i

is strictly better off by switching to the new bid vector for a sufficiently small ε. In

either case, it is profitable for agent i to switch to the new bid vector. Therefore,

every agent must be indifferent concerning the identity of the proposer.

Second, suppose that BN
i = 1 does not hold for all i ∈ N , which implies that

there is m ∈ N \ argmaxi∈N B
N
i . Let p = | argmaxi∈N B

N
i |. Then, any agent

j ∈ argmaxi∈N B
N
i could switch to the following new bid vector b̃Nj , which is well-
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defined:

b̃Njk ≡



(1− ε)bNjk if k = j,

(1− ε)2bNjk if k ∈ argmaxi∈N B
N
i \ {j},

(1− ε)1−2pbNjk if k = m,

bNjk otherwise,

where ε ∈ R++ is sufficiently small. After this switch, agent j would be the proposer

for sure. Notice that
n
√
B̃Nj

bNij
<

n
√
BNj
bNij

for each i ∈ N \ {j} because B̃N
j < BN

j given

that b̃Njj < bNjj. Then, by Claim 2, agent j can propose an allocation plan that assigns

a bundle slightly better for i than
n
√
B̃Nj

bNij
POShi(N \ {j},w |N\{j},�|N\{j}) instead

of
n
√
BNj
bNij

POShi(N \ {j},w |N\{j},�|N\{j}), for each agent i ∈ N \ {j}, and the plan

will be accepted. Given that
n
√
B̃Nj

bNij
<

n
√
BNj
bNij

, agent j ∈ N \ {i} is strictly better off

after the switch, which is not possible. Thus, argmaxi∈N B
N
i = N , i.e., BN

i = BN
j

for all i, j ∈ N . Since
∏

i∈N B
N
i =

∏
i∈N
∏

j∈N b
N
ji =

∏
j∈N

∏
i∈N b

N
ji = 1n = 1, then

BN
i = 1 for all i ∈ N . This concludes the proof of Claim 3.

To continue with the proof of part (ii), let

cNij ≡
n
√
BN
i

bNji
, (4)

for all i, j ∈ N such that i 6= j. We verify that
n
√
BNi
bii

∏
j∈N\{i} c

N
ij =

BNi∏
j∈N bNji

= 1 and

n
√
BNi
bii

∏
j∈N\{i} c

N
ji =

∏
k∈N

n
√
BNk
bik

=
n
√∏

k∈N BNk∏
k∈N bik

= n

√∏
k∈N B

N
k = n

√∏
k∈N

∏
j∈N b

N
jk =

n

√∏
j∈N

∏
k∈N b

N
jk = 1. Thus,

∏
j∈N\{i} c

N
ij =

∏
j∈N\{i} c

N
ji = bii

n
√
BNi

, which satisfies

the condition (2a) of Definition 13 of the POSh. To check that the concessions that

we defined in (4) also satisfy the condition (2b) of Definition 13, we notice that,

when agents’ preferences are homothetic, this condition is equivalent to:

For each j ∈ N \ {i}, xj ∼j cNij ζj(N \ {i},w|N\{i},�|N\{i}).

We can interpret ζj(N \{i},w |N\{i},�|N\{i}) as POShj(N \{i},w |N\{i},�|N\{i})

since, as we have shown, SN jΓ (N \{i},w |N\{i},�|N\{i}) = POShj(N \{i},w |N\{i}

,�|N\{i}). Then, condition (2b) is also satisfied, which completes the proof of part

(ii).

We now prove part (iii) of our induction. Let us denote by cN
′

i , for all i ∈ N ′,

the unique vector of concessions for the subeconomy (N ′,w |N ′ ,�|N ′) for all N ′ ⊆ N
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such that n′ ≥ 2. We construct the agents’ strategy profile as follows. At any

subgame where the remaining set of active agents (i.e., the agents who choose a

strategy) is N ′ ⊆ N and they have to bid, agent i ∈ N ′ selects the bid bN
′

ij = 1

cN
′

ji

for

player j ∈ N ′ \{i} and bN
′

ii =
∏

k∈N ′\{i} c
N ′

ki (hence, the bids are well-defined because

BN ′
i =

∏
j∈N ′ b

N ′
ji =

∏
j∈N ′\{i}

1

cN
′

ij

∏
k∈N ′\{i} c

N ′

ki =
∏

j∈N ′\{i}
1

cN
′

ji

∏
k∈N ′\{i} c

N ′

ki = 1

due to the condition 2a) of Definition 13). Proposers’ equilibrium allocation plans

and the rest of agents’ responses to the proposers’ plans at any subgame follow the

description in Claim 2 b).

We have shown that no agent has an incentive to deviate once the bids bN have

been made. It remains to verify that no agent has an incentive to change the bid

vector. Suppose that agent i ∈ N changes his bid from bNi to b̃Ni . Then it will

not be the case that BN
j = 1 for all j ∈ N . Denote by α the resulting proposer.

Given that B̃N
α ≡ b̃Niα

∏
j∈N\{i} b

N
jα >

∏
j∈N b

N
jα = BN

α , it is necessarily the case that

b̃Niα > bNiα. If α = i, then each agent j ∈ N \ {i} will be allocated a bundle xj ∼j
n
√
B̃Ni
bNji

POShj(N \ {i},w |N\{i},�|N\{i}) �j
n
√
BNi
bNji

POShj(N \ {i},w |N\{i},�|N\{i})

(see Claim 2 a)), and he will be better off. By Pareto efficiency of the final allocation,

agent i, as the residual claimant, cannot be strictly better off. If, on the other hand,

α 6= i, agent i will be allocated a bundle xi ∼i
n
√
B̃Nα
b̃Niα

POShi(N \ {α},w |N\{α}

,�|N\{α}) �i
n
√
BNα
bNiα

POShi(N \ {α},w |N\{α},�|N\{α}) because b̃Niα > bNiα implies

that
n
√
B̃Nα
b̃Niα

<
n
√
BNα
bNiα

. Therefore, agent i cannot be strictly better off either. This

proves the existence of an SPNE, which concludes the proof of the theorem.
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